Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635506

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits, but severe winter defoliation affects the following year's yield, and the response mechanism of lemon defoliation is currently unknown. Two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemons. The petiole abscission zone was collected at three different defoliation stages, namely, the predefoliation stage (k15), the middefoliation stage (k30), and the postdefoliation stage (k45). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 1141, 2695, and 1433 differentially expressed genes (DEGs) were obtained in k15, k30, and k45, respectively, and the number of DEGs in k30 was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to hydrolase activity, chitinase activity, oxidoreductase activity, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in k30, which involved plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of amino acids. The expression trends of some DEGs suggested their roles in regulating defoliation in Lemon. Seven genes were obtained by WGCNA, including sorbitol dehydrogenase (CL9G068822012_alt, CL9G068820012_alt, CL9G068818012_alt), abscisic acid 8'-hydroxylase (CL8G064053012_alt, CL8G064054012_alt), and asparagine synthetase (CL8G065162012_alt, CL8G065151012_alt), suggesting that these genes may be involved in the regulation of lemon leaf abscission.


Assuntos
Secas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo
2.
PeerJ ; 12: e17218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685937

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including ß-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.


Assuntos
Citrus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Transcriptoma , Citrus/genética , Citrus/metabolismo , Citrus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mitochondrial DNA B Resour ; 6(2): 425-427, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33628878

RESUMO

'Yunning No.1' lemon, a mutant of Eureka lemon, is originally found in Yunnan province of China and is the main cultivated lemon variety there. In this study, we assembled and annotated its chloroplast genome using Illumina Hiseq-2500 whole genome re-sequencing data. Its chloroplast genome is 160,141 bp in size, containing a 87,754 bp large single copy region, a 18,385 bp small single copy region and a pair of 27,001 bp inverted repeat region. Like many citrus species, 114 unique genes (including 80 protein-coding genes, 30 tRNAs and 4 rRNAs) could be identified from the chloroplast genome of 'Yunning No.1'. Phylogenetic analysis revealed that the 'Yunning No.1' chloroplast genome was closest to Citrus maxima.

4.
PLoS One ; 9(4): e94506, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732455

RESUMO

Pummelo cultivars are usually difficult to identify morphologically, especially when fruits are unavailable. The problem was addressed in this study with the use of two methods: high resolution melting analysis of SNPs and sequencing of DNA segments. In the first method, a set of 25 SNPs with high polymorphic information content were selected from SNPs predicted by analyzing ESTs and sequenced DNA segments. High resolution melting analysis was then used to genotype 260 accessions including 55 from Myanmar, and 178 different genotypes were thus identified. A total of 99 cultivars were assigned to 86 different genotypes since the known somatic mutants were identical to their original genotypes at the analyzed SNP loci. The Myanmar samples were genotypically different from each other and from all other samples, indicating they were derived from sexual propagation. Statistical analysis showed that the set of SNPs was powerful enough for identifying at least 1000 pummelo genotypes, though the discrimination power varied in different pummelo groups and populations. In the second method, 12 genomic DNA segments of 24 representative pummelo accessions were sequenced. Analysis of the sequences revealed the existence of a high haplotype polymorphism in pummelo, and statistical analysis showed that the segments could be used as genetic barcodes that should be informative enough to allow reliable identification of 1200 pummelo cultivars. The high level of haplotype diversity and an apparent population structure shown by DNA segments and by SNP genotypes, respectively, were discussed in relation to the origin and domestication of the pummelo species.


Assuntos
Citrus/genética , DNA de Plantas/genética , Ecótipo , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Variação Genética , Técnicas de Genotipagem , Haplótipos/genética , Desnaturação de Ácido Nucleico/genética , Nucleotídeos/genética , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA